Probing the structure of the nicotinic acetylcholine receptor with the hydrophobic photoreactive probes [125I]TID-BE and [125I]TIDPC/16.
نویسندگان
چکیده
The hydrophobic photoreactive compound 3-trifluoromethyl-3-(m-[125I]iodophenyl) diazirine ([125I]TID) has revealed important structural information about the pore of the ion channel and lipid-protein interface of the nicotinic acetylcholine receptor (AChR). To further characterize the structure of the AChR, we have mapped the sites of photoincorporation of a benzoic acid ester analogue of TID ([125I]TID-BE) and a phospholipid analogue ([125I]TIDPC/16). For each photoreactive probe, labeled sites were identified by amino-terminal sequencing of purified tryptic fragments of individual receptor subunits. [125I]TID-BE reacted with alphaCys-412, alphaMet-415, and alphaCys-418 in the M4 segment of the alpha-subunit and gammaCys-451 and gammaSer-460 in gammaM4. In the M1 segment of the alpha- and beta-subunits, [125I]TID-BE labeled alphaPhe-227, alphaLeu-228, and betaLeu-234, betaAla-235, respectively. The labeling pattern in the M1 and M4 segments indicate that TID and TID-BE interact with the AChR lipid-protein interface in a similar fashion, revealing the same lipid-exposed face of each transmembrane segment. In contrast to TID, there was, however, no detectable incorporation of [125I]TID-BE into the channel lining betaM2 segment when the AChR was labeled in the resting state conformation. In the presence of agonist (desensitized state), [125I]TID-BE reacted with betaLeu-257, betaVal-261, and beta-Leu-264 in betaM2; a labeling pattern which indicates that, in comparison to TID, the binding loci for TID-BE is located closer to the extracellular end of the channel. For [125I]TIDPC/16, receptor labeling was insensitive to the presence of agonist and the sites of incorporation mapped to the confines of the transmembrane segments alphaM4, alphaM1, and gammaM4, validating previous results found with small lipophilic probes.
منابع مشابه
Identifying the lipid-protein interface of the alpha4beta2 neuronal nicotinic acetylcholine receptor: hydrophobic photolabeling studies with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine.
Using an acetylcholine-derivatized affinity column, we have purified human alpha4beta2 neuronal nicotinic acetylcholine receptors (nAChRs) from a stably transfected HEK-293 cell line. Both the quantity and the quality of the purified receptor are suitable for applying biochemical methods to directly study the structure of the alpha4beta2 nAChR. In this first study, the lipid-protein interface o...
متن کاملEffects of antibody binding on structural transitions of the nicotinic acetylcholine receptor.
Patch-clamping and photoaffinity-labeling techniques were used to study the effects of binding of monoclonal antibodies (mAbs) on the function of Torpedo californica nicotinic acetylcholine receptor (nAChR). The rat anti-Torpedo nAChR mAbs examined here are known to inhibit ligand binding to either the high-affinity (mAb 247) or both the high- and low-affinity binding sites (mAb 370 and mAb 387...
متن کاملIdentifying the lipid-protein interface and transmembrane structural transitions of the Torpedo Na,K-ATPase using hydrophobic photoreactive probes.
To identify regions of the Torpedo Na,K-ATPase alpha-subunit that interact with membrane lipid and to characterize conformationally dependent structural changes in the transmembrane domain, we have proteolytically mapped the sites of photoincorporation of the hydrophobic compounds 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) and the phosphatidylcholine analogue [(125)I]TI...
متن کاملAssessment of epidermal growth factor receptor status in glioblastomas
Objective(s): Our previous study showed that a newly designed tracer radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3'-iodophenoxy)quinazoline ([125I]PYK) is promising for the evaluation of the epidermal growth factor receptor (EGFR) status and prediction of gefitinib treatment of non-small cell lung cancer. EGFR is over-expressed and mutated also in glioblastoma. In the present study, the ...
متن کاملAgonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic noncompetitive antagonist.
To characterize structural changes induced in the nicotinic acetylcholine receptor (AChR) by agonists, we have mapped the sites of photoincorporation of the cholinergic noncompetitive antagonist 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (]125I]TID) in the presence and absence of 50 microM carbamylcholine. [125I]TID binds to the AChR with similar affinity under both these conditions, b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 37 41 شماره
صفحات -
تاریخ انتشار 1998